

PII: S0040-4020(97)00921-6

Improved Stereoselective Synthesis of Both Methyl α - and β -Glycosides Corresponding to the Amino Sugar Component of the E Ring of Calicheamicin γ_1^I and Esperamicin A_1

Fabrizio Badalassi, Paolo Crotti,* Lucilla Favero, Franco Macchia and Mauro Pineschi Dipartimento di Chimica Bioorganica, Università di Pisa, Via Bonanno 33, 56126 Pisa, Italy

Abstract: The monosaccharide component (α and β -anomer) of the E Ring of calicheamicin γ_1^{T} and esperamicin A₁ has been synthetized by an efficient and improved stereoselective procedure starting from methyl 2-deoxy- α - and β -D-ribopyranoside. The synthetic procedure makes use, in each case, of a cyclic sulphate and of the regioselective ring opening of an intermediate activated aziridine. © 1997 Elsevier Science Ltd.

Calicheamicin $\gamma_1^{\rm I}$ (1) and esperamicin A_I (2), components of a class of compounds, the enediyne antibiotics, possessing a remarkable antitumor activity,¹ have attracted chemists in view of the achievement of their total or partial synthesis. At the moment, two total syntheses of 1 have been realized,^{2,3} while other partial syntheses have commonly aimed to construct the important oligosaccharide system of 1 and 2.⁴

We found recently an effective enantioselective synthesis of the amino sugar 3β (β anomer) corresponding to the E Ring of 1 starting from methyl 2-deoxy- β -D-ribopyranoside (6β):⁵ the core of our approach to 3β was

the use of an activated aziridine (aziridine 8β) whose regioselective ring opening with methanol under acid conditions gave the exact stereo- and regiochemistry (compound 9β) of the target compound 3β , as shown in Scheme 1.5

In consideration of the fact that the monosaccharidic starting material (methyl β -ribopyranoside 6β)^{5,6} necessary for the above-described enantioselective synthesis of 3β is separated from the corresponding α -anomer 6α only with difficulty and in an unsatisfactory yield (Scheme 1),^{5,6} and in view of the possible utilization of both 3α and 3β for the construction of the β -glycosidic linkage of the E Ring to the remaining oligosaccharide moiety of 1,^{3a} we thought it worthwhile to check whether the above-described synthetic procedure for 3β , starting from 6β , could be efficiently utilized also for the synthesis of 3α , starting from 6α .

The synthesis of aziridine 7α through the sequence 6α — monotosylates $10-11\alpha$ — azido alcohols 13-14 α (Scheme 1), as previously achieved in the case of the diastereoisomeric aziridine 7β , 5 turned out to be

Scheme 1

unsatisfactory in this case, due to the low yield of 7α obtained (52% yield from 6α). Particularly difficult and critical was the extraction with cold water (or other solvent) of 7α , as performed in the case of 7β , from the

crude reaction mixture obtained by treatment of azido alcohols 13-14 α with PPh₃ (Scheme 1).^{5,7} As a consequence, it was necessary, in this case, to change the synthetic approach to 7α , and the use of a cyclic sulfate appeared promising.

The reaction of 6α with SOCl₂^{8a} afforded an 80:20 mixture of cyclic sulfites 15α and 16α (or viceversa, Scheme 2) which were directly oxidized with RuCl₃ and NaIO₄ to cyclic sulfate 17α . Nucleophilic aliphatic substitution of 17α with LiN₃ afforded a mixture of azido sulphates 18α and 19α which were directly reduced with LiAlH₄^{8c} to give pure aziridine 7α (76% yield from 6α). Acetylation of 7α afforded the activated aziridine 8α which was subjected to acid methanolysis to yield methoxy amide 9α (a C-3 product, Scheme 2), as practically the only reaction product, 9 possessing the exact regio- and stereochemistry of the target compound. LiAlH₄ reduction of 9α afforded the desired anomer 3α (54% yield fom 6α). 3a, 10

Scheme 2

The complete C-3 selectivity observed in the acid methanolysis of aziridine 8α can be rationalized, in accordance with previous results in other similar aziridine systems, ¹¹ by admitting a reactivity of aziridine 8α in its conformation \mathbf{b}^{12} which allows the protonation process of the aziridine nitrogen to be efficiently stabilized by an intramolecular hydrogen bond with the endocyclic oxygen, as shown in structure **20** (Scheme 3). The diaxial nucleophilic attack ¹³ of MeOH on **20** can occur only on the C(3) aziridine carbon to give exclusively the C-3 product (compound 9α), as observed.

The above-described procedure for the synthesis of aziridine 7α , which makes use of an intermediate cyclic sulphate, was also repeated for the synthesis of aziridine 7β on the synthetic route to 3β , as shown in Scheme 2. In this way, aziridine 7β was obtained in a lower yield (80% yield from 6β) than when synthesized

following the previously described procedure (84% yield, Scheme 1),⁵ but in a more reproducible way, which is to be decidedly preferred.

This simple and efficient synthetic procedure to both aziridines 7α and 7β , allowed us to utilize these intermediates also for the synthesis of both methyl α - and β -glycosides 4α and 4β (Scheme 4), respectively, corresponding to the N-isopropyl-substituted amino sugar constituent of the E Ring of esperamicin A_1 (2). For

Scheme 4

the synthesis of 4α and 4β , the synthetic procedure previously utilized for the preparation of the corresponding N-ethyl derivatives (compounds 3α and 3β , Scheme 2) had to be appropriately modified. The reaction of aziridine 7β with benzylchloroformate yielded the new activated aziridine 21β , which by acid methanolysis gave the methoxy urethane 22β , as practically the only opening product. Deprotection of 22β by catalytic hydrogenation afforded the methoxy amine 24β which was alkylated by reductive amination with acetone in the

presence of Ti(O-i-Pr)₄¹⁴ to give the target compound 4 β (39% yield starting from 6 β) (Scheme 4). Analogous treatment of aziridine 7 α initially afforded the corresponding N-activated aziridine 21 α which was opened with methanol under acid conditions to give exclusively the methoxy urethane 22 α , then deprotected to the amine 24 α which was alkylated to the anomeric target compound 4 α (40% yield from 6 α) (Scheme 4).

The complete C-3 selectivity observed in the acid methanolysis of both aziridines 21α and 21β can be explained, in the case of 21α , by means of the same rationalizations already used in the case of the corresponding activated aziridine 8α (see above and Scheme 3), ¹² and, in the case of 21β , by admitting a practically complete reactivity of 21β in its more stable conformation b: ¹⁵ diaxial attack ¹³ of MeOH on the corresponding protonated species 23 can occur only on the C(3) aziridine carbon to give the complete selectivity so far observed.

In conclusion, we have obtained the enantioselective synthesis of both methyl α - and β -glycosides corresponding to the amino sugars constituent of the E Ring of calicheamicin (1) and esperanicin A₁ (2), starting from methyl 2-deoxy- α - (6 α) and β -D-ribopyranoside (6 β), respectively, through a completely stereoselective and regioselective process. The complete stereoselectivity and regioselectivity so far observed in these transformations advantageously allows the direct use of the difficult-to separate mixture of 6 α and 6 β (Scheme 1) to obtain an almost corresponding mixture of the anomeric target compounds (3 α and 3 β or 4 α and 4 β) by a simple and time-saving procedure which does not need any purification or separation process. The mixture of 3 α and 3 β or 4 α and 4 β can then be utilized for the construction of the oligosaccharide moiety (E Ring) of 1 and 2, respectively.

Experimental

Melting points were determined on a Kofler apparatus and are uncorrected. ^{1}H and ^{13}C NMR spectra were determined with a Bruker AC-200 spectrometer on CDCl₃ solutions using tetramethylsilane as the internal standard. Optical rotations were measured with a Perkin-Elmer 241 digital polarimeter with a 1 dm cell. All reactions were followed by TLC on Alugram SIL G/UV₂₅₄ silica gel sheets (Macherey-Nagel) with detection by UV or with 0.5% phosphomolybdic acid solution in 95% EtOH. Silica gel 60 (Macherey-Nagel 230-400 mesh) was used for flash chromatography. Pure methyl 2-deoxy- β - (6β) and α -D-ribopyranoside (6α) and their 75:25 mixture were prepared as previously described. 5,6

Mixture of Azido Alcohols 13α and 14α. Following a previously described procedure, 5 a solution of methy β-glycoside 6α (0.518 g, 3.5 mmol) in anhydrous pyridine (10 ml) was treated at 0°C with TsCl (0.67 g, 3.5 mmol) and the reaction mixture was stirred at r.t. for 48 h. Dilution with CH₂Cl₂ and evaporation of the washed (water) organic solution afforded a crude reaction product (1.08 g) consisting of a 67:22:11 mixture of monotosylates 10α and 11α (89%) and ditosylate 12α (11%) (1 H NMR) which was dissolved in anhydrous DMF (4.0 ml) and then treated with NaN₃ (0.93 g, 14.3 mmol); the reaction mixture was stirred for 1 h at 120°C. Dilution with ether and evaporation of the washed (saturated aqueous NaCl solution) organic solution afforded a crude reaction product which was subjected to flash chromatography (a 1:1 mixture of hexane and AcOEt was used as the cluant) to give a 77:23 purified mixture of azido alcohols 13α and 14α (0.402 g, 66% yield, based on 6α) (1 H NMR) which was directly utilized in the next step. An analytical sample (0.35 g) of the purified mixture of 13α and 14α was subjected to semipreparative TLC (a 6:4 mixture of ether

and hexane was used as the solvent). Extraction of two most intense bands (the faster moving band contained 13α) afforded pure azido alcohols 13α (0.230 g) and 14α (0.050 g).

Methyl 2,3-Dideoxy-3-azido-α-L-threo-pentopyranoside (13α), a liquid, IR 2104 cm⁻¹, $[\alpha]_D^{22}$ =+110.8 (c 1.3, CHCl₃); ¹H NMR δ 4.74 (dd, 1H, J=3.4 and 1.7), 3.42-3.82 (m, 4H), 3.35 (s, 3H), 2.14 (ddd, 1H, J=13.2, 4.7 and 1.8), 1.66 (ddd, 1H, J=13.2, 11.6, and 3.4). ¹³C NMR δ 98.32, 70.51, 62.68, 61.15, 55.5, 34.9. Anal. Calcd for C₆H₁₁N₃O₃: C, 41.62; H, 6.40; N, 24.26. Found: C, 41.78; H, 6.38; N, 24.30.

Methyl 2,4-Dideoxy-4-azido-α-L-threo-pentopyranoside (14α), a solid m.p. 54°C (from hexane), IR 2104 cm⁻¹ [α]_D²²=+140.5 (c 0.7, CHCl₃); ¹H NMR δ 4.68 (t, 1H, J=3.1) 4.14 (dd, 1H, J=12.6 and 2.6), 3.69-3.85 (m, 1H), 3.41-3.65 (m, 2H), 3.39 (t, 3H), 2.15 (dd, 1H, t=14.3 and 3.5), 1.77 (ddd, 1H, t=14.3 and 3.9). ¹³C NMR δ 99.73, 67.14, 60.77, 58.43, 56.44, 33.16. Anal. Calcd for C₆H₁₁N₃O₃: C, 41.62; H, 6.40; N, 24.26. Found: C, 41.70; H, 6.37; N, 24.35.

While monotosylates 10α and 11α [10α (75%), 1 H NMR 8 4.33 (dd, 1H, J=7.0 and 2.9), 3.40 (s, 3H); 11α (25%), 1 H NMR 8 4.53 (ddd, 1H, J=9.1, 4.5 and 3.1), 3.37 (s, 3H)] turned out to be completely unseparable by any chromatographic technique, ditosylate 12α was easily separated from 10α and 11α by flash chromatography (an 1:1 mixture of hexane and AcOEt was used as the eluant) to give pure 12α as a solid m.p. 113-114°C (dec.) (from hexane/acetone): 1 H NMR 8 7.75 (d, 2H, J=8.3), 7.72 (d, 2H, J=8.3), 7.32 (d, 4H, J=8.2), 4.50-4.66 (m, 2H), 4.37 (dd, 1H, J=6.2 and 3.0), 4.12 (dd, 1H, J=12.5 and 5.2), 3.43 (dd, 1H, J=10.2 and 2.4), 3.38 (s, 3H), 2.45 (s, 6H), 2.10 (ddd, 1H, J=13.5, 8.6 and 6.2), 1.88 (ddd, 1H, J=13.6 and 3.6). 13 C NMR 8 145.74, 133.95, 133.81, 130.52, 128.63, 128.55, 99.46, 74.41, 73.88, 61.77, 56.87, 34.04, 22.35. Anal. Calcd for $C_{20}H_{24}O_{8}S_{2}$: $C_{20}G_$

Cyclic Sulphites 15 α and 16 α . Following a previously described procedure, ^{8a} SOCl₂ (0.9 ml, 12.3 mmol) was added dropwise at 0°C to a solution of 6 α (0.500 g, 3.38 mmol) in anhydrous THF (10 ml) in the presence of NEt₃ (2.0 ml, 14.35 mmol). The reaction mixture was stirred for 1 h at the same temperature, then diluted with CHCl₃. Evaporation of the washed (water) organic solution afforded a crude product which was purified by flash chromatography (a 7:3 mixture of hexane and AcOEt was used as the eluant) to give an unseparable mixture (0.574 g, 87% yield) of sulphites 15 α and 16 α (80:20 or viceversa, ¹H NMR) [15 α (or 16 α) ¹H NMR δ 5.17 (q, 1H, J=5.5 Hz), 4.61 (t, 1H, J=4.2), 4.22 (dd, 1H, J=12.9 and 7.1), 3.86 (dd, 1H, J=12.9 and 4.8 Hz), 3.43 (s, 3H); 16 α (or 15 α) ¹H NMR δ 5.08 (q, 1H, J=5.4 Hz), 3.39 (s, 3H)].

Cyclic Sulphites 15β and 16β. Proceeding as described above for the preparation of 15α and 16α, the reaction of methyl β-glycoside 6β (1.014 g, 6.85 mmol) in anhydrous THF (20 ml) with SOCl₂ (1.8 ml, 24.6 mmol) in the presence of NEt₃ (4.0 ml, 28.7 mmol) afforded a crude product which was filtered by flash cromatography (a 7:3 mixture of hexane and AcOEt was used as the eluant), to give an unseparable mixture (1.13 g, 85% yield) of sulphites 15β and 16β (73:27 or viceversa). [15β (or 16β): 1 H NMR δ 5.17 (q, 1H, J=5.9), 4.76 (t, 1H, J=4.3), 4.04 (dd, 1H, J=13.5 and 2.6), 3.95 (dd, 1H, J=13.7 and 1.9), 3.38 (s, 3H), 2.08 (ddd, 1H, J=14.4, 5.7 and 4.3), 2.00 (ddd, 1H, J=14.4, 6.8 and 4.3); 16β (or 15β) 1 H NMR δ 4.83 (t, 1H, J=3.6), 4.51 (quintet, 1H, J=2.8), 4.18 (dd, 1H, J=13.4 and 2.4), 3.39 (s, 3H), 2.53 (ddd, 1H, J=14.0, 8.8 and 3.5), 2.22 (ddd, 1H, J=14.0, 6.1 and 3.5)].

Cyclic Sulphate 17α. Following a previously described procedure, 8b NaIO₄ (0.641 g, 3.0 mmol) and RuCl₃ (6 mg) were added to a solution of the mixture of sulphites 15α and 16α (0.582 g, 3.0 mmol) in 1:1:1.5 CH₂Cl₂:MeCN:H₂O (17 ml) and the reaction mixture was stirred for 1 h at room temperature. Dilution with

CH₂Cl₂ and evaporation of the washed (water) and filtered (celite) organic solvent afforded a crude solid product, consisting of practically pure 17α (0.624 g, 99% yield) which was directly utilized in the next step. An analytical sample of crude 17α was recrystallized from hexane to give pure 17α , as a solid m.p. 64-67°C, $|\alpha|_D^{22}=+110.6$ (c 1.1, CHCl₃); ¹H NMR δ 5.09 (q, 1H, J=5.4 Hz), 4.87 (ddd, J=7.3 and 5.1 Hz), 4.55 (t, 1H, J=4.2 Hz), 4.15 (dd, 1H, J=12.8 and 7.3 Hz), 3.79 (dd, 1H, J=12.8 and 5.1 Hz), 3.36 (s, 3H), 2.25 (dd, 2H, J=5.0 and 4.2 Hz). ¹³C NMR δ 97.15, 78.61, 76.65, 57.78, 56.60, 31.81. Anal. Calcd for C₆H₁₀O₆S: C, 34.28; H, 4.80. Found: C, 34.65; H, 4.45.

Cyclic Sulphate 17β. Proceeding as described above for the preparation of 17α, the reaction of the mixture of sulphites 15β and 16β (1.052 g, 5.4 mmol) in 1:1:1.5 CH₂Cl₂: MeCN: H₂O (35 ml), with NaIO₄ (1.158 g, 5.4 mmol) and RuCl₃ (11 mg) afforded a crude solid product consisting of pratically pure 17β (1.136 g, 99% yield) which was directly utilized in the next step. An analytical sample was recrystallized from hexane to give pure 17β, as a solid m.p. 75-77°C (dec.), $|\alpha|_D^{22}$ =-155.6 (*c* 1.1, CHCl₃): ¹H NMR δ 5.20 (ddd, 1H, *J*=8.4 and 5.7 Hz), 4.95-5.02 (m, 1H), 4.88 (t, 1H, *J*=3.5 Hz), 4.11 (dd, 1H, *J*=14.4 and 1.5 Hz), 3.99 (dd, 1H, *J*=14.4 and 2,3 Hz), 3.38 (s, 3H), 2.38 (ddd, 1H, *J*=14.1, 8.6 and 3.9 Hz), 2.22 (ddd, 1H, *J*=14.1, 5.9 and 3.5 Hz). ¹³C NMR δ 97.60, 78.60, 78.12, 58.28, 56.18, 31.37. Anal. Calcd for C₆H₁₀O₆S: C, 34.28; H, 4.80. Found: C, 34.61; H, 4.37.

(1R,4S,6R)-4-Methoxy-3-oxa-7-azabicyclo[4.1.0]heptane (7α) . ¹⁶ (a) Following a previously described procedure, ^{8c} LiN₃ (0.255 g, 5.2 mmol) was added to a solution of cyclic sulfate 17 α (0.555 g, 2.6 mmol) in anhydrous THF (26 ml) and the reaction mixture was refluxed for 12 h. After cooling to 0°C, LiAlH₄ (0.131 g, 3.57 mmol) was added and the reaction mixture was refluxed for 8 h. The usual workup afforded a crude liquid product consisting of practically pure aziridine 7α (0.304 g, 89% yield), as a liquid, $[\alpha]_D^{22}$ =+166.6 (c 0.93, CHCl₃): ¹H NMR ϵ 4.49 (dd, 1H, J=5.0 and 2.3 Hz), 4.06 (dd, 1H, J=12.2 and 2.3 Hz), 3.80 (d, 1H, J=12.2 Hz), 3.36 (s, 3H), 2.30 (t, 1H, J=6.0 Hz), 2.20 (dd, 1H, J=6.2 and 2.2 Hz), 2.08 (dd, 1H, J=15.0 and 5.0 Hz), 1.89 (ddd, 1H, J=15.1, 5.8 and 2.4). ¹³C NMR ϵ 96.1, 57.85, 55.90, 29.07, 28.89, 26.57. Anal. Calcd for C₆H₁₁NO₂: C, 55.79; H, 8.58; N, 10.84. Found: C, 55.90; H, 8.21; N, 10.63.

(b) A solution of the mixture of azido alcohols 13α and 14α (0.774 g, 4.47 mmol) in MeCN (5.0 ml) was treated with PPh₃ (1.17 g, 4.47 mmol) and the reaction mixture was stirred at room temperature until evolving of gas (N₂) was no longer observed (30 min), and then for 18 h at 80°C. Evaporation of the solvent afforded a crude product which was dissolved in cold (4°C) water (20 ml) and the suspension was filtered. The aqueous solution was concentrated, filtered again if necessary, and then evaporated to give practically pure aziridine 7α (¹H NMR) (0.537 g, 80% yield, 1% Ph₃PO was still present), as a liquid, which was directly utilized in the next step. An analytical sample was purified by flash chromatography (a 5:4:1 mixture of CH₂Cl₂, hexane and NEt₃ was used as the eluant) to give pure 7α .

Aziridine 7 β . The treatment of the cylic sulfate 17 β (1.136 g, 5.4 mmol), as described above for 17 α , afforded a crude liquid product consisting of aziridine 7 β (0.662 g, 95% yield), practically pure.⁵

(1R,4S,6R)-4-Methoxy-7-acetyl-3-oxa-7-azabicyclo[4.1.0]heptane (8α) . Following a previously described procedure, a solution of aziridine 7α (0.425 g, 3.29 mmol) in anhydrous CH₂Cl₂ (10 ml) was treated with K₂CO₃ (3.62 g, 20.0 mmol) and Ac₂O (0.36 ml, 3.81 mmol) and the reaction mixture was stirred for 3 h at room temperature. Evaporation of the filtered organic solution afforded a crude solid product consisting of practically pure 8α (0.41 g, 96% yield) which was directly utilized in the next step. An

analytical sample of crude 8α was purified by flash chromatography (a 5:4:1 mixture of CH₂Cl₂, hexane and NEt₃ was used as the eluant) to give pure 8α , as a liquid, $[\alpha]_D^{22}$ =+155.3 (c 0.9, CHCl₃):¹H NMR δ 4.53 (dd, 1H, J=4.7 and 2.4), 4.05 (dd, 1H, J=12.6 and 2.3 Hz), 3.92 (d, 1H, J=12.6 Hz), 3.38 (s, 3H), 2.81 (t, 1H, J=6.1 Hz), 2.71 (dd, 1H, J=6.4 and 2.2 Hz), 2.22 (ddd, 1H, J=15.1, 4.9 and 0.7 Hz), 2.16 (s, 3H), 1.92 (ddd, 1H, J=15.1, 5.7 and 2.5 Hz). ¹³C NMR δ 183.11, 95.92, 57.99, 55.95, 34.13, 32.33, 28.46, 24.13. Anal. Calcd for C₈H₁₃NO₃: C, 56.13; H, 7.65; N, 8.17. Found: C, 56.44; H, 7.49; N, 8.31.

Methyl 2,4-Dideoxy-4-acetamido-3-*O*-methyl-α-L-threo-pentopyranoside (9α). A solution of aziridine 8α (0.254 g, 1.5 mmol) in 0.2 N H₂SO₄ in anhydrous MeOH (4.0 ml) was stirred at 0°C for 20 min. K₂CO₃ was added in order to neutralize the acidity, and the solvent was evaporated. The solid residue was extracted with CH₂Cl₂: evaporation of the filtered (celite) organic solution afforded a crude reaction product (0.305 g) mostly consisting of compound 9α (93%), together with a complex mixture of products (7%) (¹H NMR).⁹ The crude reaction product was directly utilized in the next step without any further purification. Another sample of the crude reaction product (0.20 g) was subjected to flash chromatography (a 9.5:0.5 mixture of AcOEt and MeOH was used as the eluant) to give pure 9α (0.166 g) and the complex mixture (0.08 g): 9α, a solid, m.p. 159-162°C (from AcOEt), $|\alpha|_D^{22}$ =+133.0 (*c* 0.28, CHCl₃) [lit.^{3a} m.p.155-157°C, $|\alpha|_D^{23}$ =+99.1 (*c* 0.23, CHCl₃)]; ¹H NMR δ 4.56 (t, 1H, *J*=3.6 Hz), 4.28 (dd, 1H, *J*=11.8 and 2.7 Hz), 3.88-3.98 (m, 1H), 3.35-3.51 (m, 1H), 3.42 (s, 3H), 3.40 (s, 3H), 3.28 (dd, 1H, *J*=11.8 and 4.1 Hz), 2.03 (ddd, 1H, *J*=14.6 and 4.1 Hz), 2.02 (s, 3H), 1.80 (ddd, 1H, *J*=14.6 and 3.9 Hz). ¹³C NMR δ 170.64, 99.27, 75.08, 60.26, 57.26, 56.53, 47.87, 32.02, 23.95. Anal.Calcd for C9H₁₇NO₄: C, 53.19; H, 8.43; N, 6.88. Found: C, 53.34; H, 8.66; N, 6.58.

Methyl 2,4-Dideoxy-4-(ethylamino)-3-*O*-methyl-α-L-*threo*-pentopyranoside (3α). The above-described crude reaction mixture containing amide 9α (0.270 g) in anhydrous THF (8 ml) was treated with LiAlH₄ (0.12 g) and the resulting reaction mixture was gently refluxed for 2 h. After cooling, aqueous 4N NaOH was added in order to destroy the excess of hydride. Evaporation of the filtered organic solution afforded a crude product (0.244 g), consisting of the amino sugar 3α , practically pure, which was subjected to flash chromatography (a 6:4:0.3 mixture of hexane, CH₂Cl₂, and NEt₃ was used as the eluant) to give pure amino sugar 3α (0.210 g, 80% yield), as a liquid, $|\alpha|_D^{22}$ =+145.8 (*c* 1.1, CHCl₃) [lit.^{3a,10} solid, m.p. 123°C, $|\alpha|_D^{23}$ =+99.7 (*c* 1.0, CHCl₃)]; ¹H NMR (C₆D₆) δ 4.14-4.00 (m, 2H), 3.33 (s, 3H), 3.10-2.88 (m, 2H), 3.02 (s, 3H), 2.61 (ddd, 1H, *J*=9.0 and 4.5 Hz), 2.50-2.27 (m, 2H), 2.11 (ddd, 1H, *J*=12.4, 4.5 and 2.4 Hz), 1.66-1.43 (m, 1H), 0.88 (t, 3H, *J*=7.1 Hz). ¹³C NMR δ 102.01, 79.61, 65.70, 59.24, 57.05, 56.67, 42.91, 35.05, 16.25. Anal. Calcd for C₉H₁₉NO₃: C, 57.12; H, 10.11; N, 7.39. Found: C, 57.34; H, 10.20; N, 7.18.

(21β). A solution of aziridine 7β (0.95 g, 7.4 mmol) in anhydrous Et₂O (25 ml) containing Et₃N (1.26 ml, 8.9 mmol) was treated at 0°C with a solution of benzylchloroformate (1.26 ml, 8.9 mmol), in anhydrous Et₂O (5 ml), and the reaction mixture was stirred at the same temperature for 1 h. Evaporation of the washed (saturated aqueous NaHCO₃ and water) organic solution afforded a crude product which was subjected to flash chromatography (a 6:4 mixture of hexane and AcOEt was used as the eluant) to give the pure aziridine 21β (1.4 g, 72% yield) as a solid, m.p. 71-72°C (from hexane), $[\alpha]_D^{22}$ =-33.5 (c 1.7, CHCl₃); ¹H NMR δ 7.28-7.42 (m, 5H), 5.12 (s, 2H), 4.29 (t, 1H, J=6.0 Hz), 4.26 (d, 1H, J=12.3 Hz), 3.87 (dd, 1H, J=12.3 and 2.4 Hz), 3.38 (s, 3H), 2.76 (ddd, 1H, J=6.2 and 3.6 Hz), 2.63 (ddd, 1H, J=6.0, 2.4 and 0.8 Hz), 2.10 (d, 1H, J=3.7 Hz), 2.07 (d, 1H, J=3.7 Hz). ¹³C NMR δ 162.77, 136.38, 129.16, 128.96, 99.67, 68.77, 62.23, 56.64,

34.76, 33.74, 28.37. Anal. Calcd for C₁₄H₁₇NO₄: C, 63.87; H, 6.51; N, 5.32. Found: C, 63.54; H, 6.22; N, 5.11.

(1R,4S,6R)-4-Methoxy-7-(benzyloxycarbonyl)-3-oxa-7-azabicyclo[4.1.0]heptane

(21 α). Following the procedure described above for the preparation of 21 β , the treatment of aziridine 7α (0.302 g, 2.32 mmol) with benzylchloroformate (0.4 ml, 2.82 mmol) afforded a crude reaction product which

(0.302 g, 2.32 mmol) with benzylchloroformate (0.4 ml, 2.82 mmol) afforded a crude reaction product which was subjected to flash chromatography (a 7:3 mixture of hexane and AcOEt was used as the eluant) to give the pure aziridine 21α (0.476 g, 78% yield) as a liquid, $[\alpha]D^{22}=+96.3$ (c 0.95, CHCl₃); ¹H NMR δ 7.30-7.42 (m, 1H), 5.10 and 5.12 (ABdd, 2H, J=12.2 Hz), 4.48 (dd, 1H, J=5 and 2.5 Hz), 4.03 (dd, 1H, J=12.6 and 2.3 Hz), 3.94 (dd, 1H, J=12.6 and 0.7 Hz), 3.35 (s, 3H), 2.82 (t, 1H, J=6.1 Hz), 2.70 (ddd. 1H, J=6.2, 2.2 and 0.9 Hz), 2.29 (ddd, 1H, J=15.2, 4.9 and 0.6 Hz), 1.87 (ddd, 1H, J=15.2, 6.0 and 2.6 Hz). ¹³C NMR δ 163.00, 136.35, 129.19, 128.96, 95.97, 68.79, 57.66, 56.01, 35.12, 33.48, 27.94. Anal. Calcd for C₁₄H₁₇NO₄: C, 63.87; H, 6.51; N, 5.32. Found: C, 63.59; H, 6.37; N, 5.09.

Methyl 2,4-Dideoxy-4-(benzyloxycarbonylamino)-3-*O*-methyl-β-L-*threo*-pentopyranoside (22β). Following the procedure described above for the preparation of 9α , the reaction of aziridine 21β (1.20 g, 4.55 mmol), with 0.2N H₂SO₄-MeOH afforded a crude reaction product (1.24 g), which was subjected to flash chromatography (a 6:4 mixture of hexane and AcOEt was used as the eluant) to give the pure urethane 22β, as a semisolid (1.148 g, 85% yield), $[\alpha]_D^{22}$ =-56.8 (*c* 0.78, CHCl₃); ¹H NMR δ 7.28-7.43 (m, 5H), 5.10 (s, 2H), 4.69 (dd, 1H, J=4.8 and 3.1 Hz), 3.85-4.04 (m, 1H), 3.60-3.76 (m, 1H), 3.44-3.60 (m, 2H), 3.38 (s, 3H), 3.36 (s, 3H), 1.73-2.10 (m, 1H), 1.63-1.82 (m, 1H). ¹³C NMR δ 156.55, 136.93, 127.06, 128.66, 99.67, 76.24, 67.35, 62.91, 56.87, 55.92, 50.79, 33.90. Anal. Calcd for C₁₅H₂₁NO₅: C, 61.00; H, 7.17; N, 4.74. Found: C, 59.86; H, 7.01; N, 4.49.

Methyl 2,4-Dideoxy-4-(benzyloxycarbonylamino)-3-*O*-methyl-α-L-*threo*-pentopyranoside (22α). Proceeding as described above for the preparation of 22β, the reaction of aziridine 21α (0.33 g, 1.25 mmol) with 0.2 N H₂SO₄-MeOH afforded a crude reaction product (0.384 g) mostly consisting of 22α which was recrystallized from hexane/AcOEt to give the pure urethane 22α, as a solid, m.p. 136-137 °C (0.318 g, 86% yield), $|\alpha|_D^{22}$ =+99.0 (*c* 1.2, CHCl₃); ¹H NMR δ 7.46-7.30 (m, 5H), 5.12 (s, 2H), 4.51 (t, 1H, *J*=3.8 Hz), 4.27 (unresolved dd, 1H, *J*=11.9 Hz), 3.78-3.60 (m, 1H), 3.40 (s, 7H), 3.38-3.20 (dd, 1H, *J*=11.8 and 4.6 Hz), 2.09 (ddd, 1H, *J*= 14.3 and 4.1 Hz), 1.76 (ddd, 1H, *J*= 14.4 and 4.4 Hz). ¹³C NMR δ 156.54, 136.90, 129.25, 128.93, 128.87, 99.41, 75.68, 67.59, 60.58, 57.48, 56.67, 49.29, 32.09. Anal. Calcd for C₁₅H₂₁NO₅: C, 61.00; H, 7.17; N, 4.74. Found: C, 61.21; H, 6.94; N, 4.52.

Methyl 2,4-Dideoxy-4-(amino)-3-*O*-methyl-β-L-*threo*-pentopyranoside (24β). A solution of urethane 22β (1.078 g, 3.6 mmol) in MeOH (50 ml) was stirred at r.t. under hydrogen in the presence of Pd/C (0.30 g). When the theoretical amount of hydrogen was adsorbed and the starting compound consumed (TLC), evaporation of the filtered (celite) organic solution afforded a crude liquid product consisting of amine 24β (0.588 g, 99% yield), practically pure, $[\alpha]_D^{22}$ =-88.5 (*c* 1.6, CHCl₃); ¹H NMR δ 4.80 (dd, 1H, *J*=3.2 and 2.1 Hz), 3.80 (dd, 1H, *J*=11.1 and 5.0 Hz), 3.59 (t, 1H, *J*=10.7 Hz), 3.42-3.60 (m, 1H), 3.39 (s, 3H), 3.34 (s, 3H), 2.97 (ddd, 1H, *J*=9.6, 4.8 Hz), 2.25 (ddd, 1H, *J*=13.2, 10.2 and 3.0 Hz). ¹³C NMR δ 99.70, 77.78, 62.41, 56.97, 55.50, 52.78, 34.47. Anal. Calcd for C₇H₁₅NO₃: C, 52.16; H, 9.38; N, 8.69. Found: C, 52.45; H, 9.59; N, 8.32.

Methyl 2,4-Dideoxy-4-(amino)-3- θ -methyl- α -L-threo-pentopyranoside (24 α). Following the procedure described above for the preparation of 24 β , hydrogenation of urethane 22 α (0.213 g, 0.72

mmol), afforded a crude liquid reaction product consisting of amine 24α (0.116 g, 99% yield), practically pure, [α] D^{22} =+131.0 (c 1.2, CHCl₃); ¹H NMR δ 4.28 (dd, 1H, J=8.8 and 2.5 Hz), 3.89 (dd, 1H, J=11.5 and 4.6 Hz), 3.40 (s, 3H), 3.31 (s, 3H), 3.04 (dd, 1H, J=11.5 and 9.6 Hz), 2.96 (ddd, 1H, J=10.0 and 4.2 Hz), 2.75 (ddd, 1H, J=9.0 and 4.6 Hz), 2.23 (ddd, 1H, J=12.6, 4.5 and 2.3 Hz), 1.34 (ddd, 1H, J=12.5, 10.3 and 8.9 Hz). ¹³C NMR δ 102.00, 81.63, 67.36, 56.88, 56.69, 52.34, 34.87. Anal. Calcd for C₇H₁₅NO₃: C, 52.16; H, 9.38; N, 8.69. Found: C, 52.28; H, 9.70; N, 8.41.

Methyl 2,4-Dideoxy-4-(isopropylamino)-3-O-methyl- β -L-threo-pentopyranoside (4 β). Following a previously described procedure, ¹⁴ a mixture of the amine 24 β (0.488 g, 3.03 mmol), acetone (0.33 ml, 4.52 mmol) and Ti(O-i-Pr)₄ (1.12 ml, 3.79 mmol) was stirred at room temperature for 1 h. Absolute ethanol (3 ml) and NaBH₃CN (0.15 g, 2.39 mmol) were added and the resulting reaction mixture was stirred at the same temperature for 20 h. The reaction mixture was diluted with CH₂Cl₂ and water (0.8 ml) and KF hydrate was added under stirring until the solvent was clear; evaporation of the filtered (celite) organic solvent afforded a crude liquid product (0.60 g), which was subjected to flash chromatography (an 8:1.5:0.5 mixture of hexane, AcOEt and NEt₃ was used as the eluant) to give the pure amine 4 β (0.50 g, 81% yield), as a liquid, $|\alpha|_D^{22}$ =-59.9 (c 2.1, CHCl₃); ¹H NMR δ 4.77 (t, 1H, J=2.9 Hz), 3.71 (dd, 1H, J=11.2 and 4.6 Hz), 3.43 (dd, 1H, J=11.0 and 9.4 Hz), 3.33-3.48 (m, 1H), 3.35 (s, 3H), 3.33 (s, 3H), 2.85 (quintet, 1H, J=6.3 Hz), 2.72 (ddd, 1H, J=9.1 and 4.5 Hz), 2.18 (ddd, 1H, J=12.9, 4.4 and 2.6 Hz), 1.55 (ddd, 1H, J=12.9, 9.7 and 3.1 Hz), 1.07 (d, 6H, J=6.2). ¹³C NMR δ 99.68, 77.87, 63.40, 56.79, 55.35, 47.26, 34.42, 25.15, 23.48. Anal. Calcd for C₁₀H₂₁NO₃: C, 59.09; H, 10.41; N, 6.89. Found: C, 58.87; H, 10.11; N, 7.07.

Methyl 2,4-Dideoxy-4-(isopropylamino)-3-*O*-methyl-α-L-*threo*-pentopyranoside (4α). Proceeding as described above for the preparation of 4β, the reaction of amine 24β (0.084 g 0.52 mmol), with acetone in the presence of Ti(O-*i*-Pr)₄ and NaBH₃CN afforded a crude reaction product (0.105 g) which was subjected to flash chromatography (an 8:1:1 mixture of hexane, AcOEt, and NEt₃ was used as the eluant) to give the pure amine 4β (0.85 g, 80% yield), as a liquid, $|\alpha|_D^{22}=+135.3$ (*c* 1.0, CHCl₃); ¹H NMR δ 4.36 (dd, 1H, J=8.3 and 2.5 Hz), 4.06 (dd, 1H, J=4.3 and 11.7 Hz), 3.47 (s, 3H), 3.36 (s, 3H), 3.09-3.23 (m, 1H), 3.11 (dd, 1H, J=114 and 9.1 Hz), 2.84 (septet, 1H, J=6.2 Hz), 2.71 (ddd, 1H, J=8.7 and 4.3 Hz), 2.29 (ddd, 1H, J=12.7, 4.5 and 2.6 Hz), 1.48 (ddd, 1H, J=12.7, 9.9 and 8.4 Hz), 1.07 (d, 6H, J=6.2 Hz). ¹³C NMR δ 101.73, 79.52, 65.79, 56.94, 56.59, 56.18, 47.29, 34.83, 25.09, 23.31. Anal. Calcd for C₁₀H₂₁NO₃: C, 59.09; H, 10.41; N, 6.89. Found: C, 59.21; H, 10.09; N, 6.99.

Reaction Sequence for the Mixture of 6α and 6β . a) Following the above-described procedures, the 75:25 mixture of methyl glycosides 6β and 6α (0.49 g, 3.31 mmol)^{5,6} was treated with TsCl (0.63 g, 3.3 mmol) to give a crude product (1.0 g) which was treated with NaN₃ (0.86 g, 13.2 mmol) in DMF (3.7 ml) at 90°C to give a mixture of azido alcohols 13α , 13β , 14α , and 14β (0.45 g, 79% yield, based on the starting mixture of 6α and 6β). The reaction of this mixture of azido alcohols 13- 14α , β with PPh₃ (0.71 g, 2.7 mmol) at 80°C yielded a 73:27 mixture of aziridines 7β and 7α (0.32 g, 93% yield) which was reacted with Ac₂O to give a crude product (0.42 g) which was filtered through a silica gel column (flash chromatography conditions). Elution with a 5:4:1 mixture of hexane, CH₂Cl₂ and NEt₃ afforded a 73:27 mixture of the *N*-acetyl aziridines 8β and 8α (0.39 g, 94% yield). Acid methanolysis of this mixture with 0.2N H₂SO₄-MeOH afforded a crude reaction product (0.457 g) largely consisting of a 75:25 mixture of amides 9β and 9α (¹H NMR) which was dissolved in anhydrous THF (13 ml) and treated with LiAlH₄ (0.22 g). The usual workup afforded a crude reaction product (0.33 g) consisting of a 75:25 mixture of amino sugars 3β and 3α (80% yield).

b) Following the above-described procedures, SOCl₂ (0.9 ml, 12.3 mmol) was added dropwise at 0°C to a solution of the 75:25 mixture of methyl glycosides 6β and 6α (0.50 g, 3.38 mmol) in anhydrous THF (10 ml) in the presence of Et₃N (2 ml, 14.35 mmol). The reaction mixture was stirred for 1h at the same temperature, then diluted with CHCl₃. Evaporation of the washed (water) organic solution afforded a crude product which was purified by flash chromatography (a 7:3 mixture of hexane and AcOEt was used as the eluant) to give an unseparable mixture (0.55 g, 84% yield) of sulphites 15-16 α , β . The mixture of sulphites 15-16 α , β was dissolved in 1:1:1.5 CH₂Cl₂: MeCN: H₂O (18 ml) and NaIO₄ (0.607 g, 2.84 mmol) and RuCl₃ (6 mg) were added to the solution; the reaction mixture was stirred for 1h at room temperature. Dilution with CH₂Cl₂ and evaporation of the washed (water) and filtred (celite) organic solvent afforded a crude product consisting of a 73:27 (¹H NMR) mixture of cyclic sulphates 17 β and 17 α (0.59 g, 99% yield). The mixture of cyclic sulphates 17 β and 17 α was dissolved in anhydrous THF (28 ml) and LiN₃ (0.275, 5.6 mmol) was added to the solution; the reaction mixture was refluxed for 12 h. After cooling to 0°C, LiAlH₄ (0.139 g, 3.66 mmol) was added and the reaction mixture was refluxed for 8h. The usual workup afforded a crude liquid product consisting of a 73:27 mixture of aziridines 7 β and 7 α (0.34 g, 92% yield) which were directly utilized in the next step of acetylation as described in point a).

In another experiment, the 75:25 mixture of amides 9β and 9α [0.20 g, point a)] was subjected to flash chromatography (a 95:5 mixture of AcOEt was used as the eluant) to give pure 9β (0.11 g) and 9α (0.040 g) (75% yield) which were then independently reduced (LiAlH₄) to the amino sugars 3β (0.092 g, 90% yield) and 3α (0.034 g, 91% yield), respectively.

References and Notes

- a) Lee, M.D.; Dunne, T.S.; Siegel, M.M.; Chang, C.C.; Morton, G.O.; Borders, D.B. J.Am.Chem.Soc. 1987, 109, 3464-3466. b) Lee, M.D.; Dunne, T.S.; Chang, C.C.; Ellestad, G.A.; Siegel, M.M.; Morton, G.O.; McGahren, W.J.; Borders, D.B. J.Am.Chem.Soc.1987, 109, 3466-3468. c) Lee, M.D.; Dunne, T.S.; Chang, C.C.; Siegel, M.M.; Morton, G.O.: Ellestad, G.A; McGahren, W.J.; Borders, D.B. J.Am.Chem.Soc. 1992, 114, 985-997. d) Zein N.; Sinha, A.M.; McGahren, W.J.; Ellestad, G.A. Science 1988, 240, 1198-1201. e) Zein, N.; Poncin, M.; Nilakantan, R.; Ellestad, G.A. Science 1989, 244, 697-699. f) Zein, N.; McGahren, W.J.; Morton, G.O.; Ashcroft, J.; Ellestad, G.A. J.Am.Chem.Soc. 1989, 111, 6888-6890.
- a) Hitchcock, S.A.; Boyer, S.H.; Chu-Moyer, M.Y.; Olson, S.H.; Danishefsky, S.J. Angew.Chem.Int.Ed.Engl. 1994, 33, 858-862. b) Haseltine, J.N.; Cabal, M.P.; Mantlo, N.P.; Iwasawa, N.; Yamashita, D.S.; Coleman, R.S.; Schulte, G.K.; Danishefsky, S.J. J.Am.Chem.Soc. 1991, 113, 3850-3866. c) Cabal, M.P.; Coleman, R.S.;, Danishefsky, S.J. J.Am.Chem.Soc. 1990, 112, 3253-3255.
- a) Groneberg, R.D.; Miyazaki, T.; Stylianides, N.A.; Schulze, T.J.; Stahl, W.; Schreiner, E.P.; Suzuki, T.; Iwabuchi, Y.; Smith, A.L.; Nicolaou, K.C. J.Am.Chem.Soc. 1993, 115, 7593-7611.
 b) Smith, A.L.; Pitsinos, E.N.; Hwang, C.-K.; Mizuno, Y.; Saimoto, H.; Scarlato, G.R.; Suzuki, T.; Nicolaou, K.C. J.Am.Chem.Soc. 1993, 115, 7612-7624.
 c) Nicolaou, K.C.; Hummel, C.W.; Nakada, M.; Shibayama, K.; Pitsinos, E.N.; Saimoto, H.; Mizuno, Y; Baldenius, K.-U.; Smith, A.L. J.Am.Chem.Soc. 1993, 115, 7625-7635.

- a) Halcomb, R.L.; Boyer, S.H.; Wittman, M.D.; Olson, S.H.; Denhart, D. J.; Liu, K.K.; Danishefsky, S.J. J.Am.Chem.Soc. 1995, 117, 5720-5749. b) Roush, W.R.; Hunt, J.A. J.Org.Chem. 1995, 60, 798-806. c) Dupradeau, F.-Y.; Prandi, J.; Beau, J.-M. Tetrahedron 1995, 51, 3205-3220. d) Mash, E.A.; Nimkar, S.K. Tetrahedron Lett. 1993, 34, 385-388. e) Kahne, D.; Yang, D.; Lee, M.D. Tetrahedron Lett. 1990, 31, 21-22. f) Golik, J.; Wong, H.; Vyas, D.M.; Doyle, T.W. Tetrahedron Lett. 1989, 30, 2497-2500.
- 5. Crotti, P.; Di Bussolo, V.; Favero, L.; Macchia, F.; Pineschi, M. Tetrahedron Asym. 1996, 7, 779-786.
- 6. a) Deriaz, R.E.; Overend, W.G.; Stacey, M.; Wiggins, L.F. J. Chem. Soc. 1949, 2836-2841.
- a) Pöchlauer, P.; Müller, E. P.; Peringer, P. Helv. Chim. Acta 1984, 67, 12381247. b) Legters,
 J.; Thijs, L.; Zwanenburg, B. Tetrahedron Lett. 1989, 30, 4881-4884.
- a) Dubois, L.; Dodd, R.N. Tetrahedron 1993, 49, 901-910. b) Van der Klein, P. A. M.; Filemon,
 W.; Veeneman, G. H.; Van der Marel, G.A.; Van Boom J. H. J. Carbohydrate Chemistry, 1992,
 11, 837-848. c) Lohray, B.B.; Gao, Y.; Sharpless, K.B. Tetrahedron Lett. 1989,30, 2623-2626.
- 9. The presence of the corresponding regioisomeric *C-4 product* cannot be completely ruled out. However, accurate examination of the crude reaction product in each case indicated that the regioisomeric *C-4 product* is not present or is present to an extent not more than 3%.
- 10. The ¹H NMR (C₆D₆) data of compound 3α obtained by us are perfectly consistent with the corresponding data of the same compound obtained by Nicolaou.^{3a} However, Nicolaou describes compound 3α as a solid (m.p. 123°C),^{3a} whereas it turned out to be a liquid in our hands. In analogy with other similar compounds (such as 3β)^{3a,5} we tend to think that 3α should reasonably be a liquid.
- a) Crotti, P.; Favero, L.; Gardelli, C.; Macchia, F.; Pineschi, M. J.Org. Chem. 1995, 60, 2514-2525.
 b) Crotti, P.; Di Bussolo V.; Favero, L.; Pineschi, M. Tetrahedron 1997, 53, 1417-1438.
- 12. The proton α to the methoxy group (the anomeric Ha proton, Scheme 3) in both the aziridines 8α and 21α shows a signal (dd) with intermediate values of the coupling constants (J= 4.7 and 2.4 Hz in 8α and J=5.0 and 2.5 Hz in 21α) indicating an almost 1:1 equilibrium between the two conformers α and α in the following specific conformers α and α in the following specific conformers α and α indicating an almost 1:1 equilibrium between the two conformers α and α in the following specific conformers α in the following constants (α in the following constants) in the following constan
- 13. a) Eliel, E.L.; Wilen, S.H. Stereochemistry of Organic Compounds, Wiley Interscience, New York, 1994, p 758-762. b) Furst, A.; Plattner, P.A. Proc. 12th International Congress of Pure and Applied Chemistry, New York, 1951, p 409.
- 14. Mattson, R. J.; Pham, K. M.; Leuck, D. J.; Cowen, K. A.; J.Org. Chem. 1990, 55, 2552-2554.
- 15. The value of the coupling constant of the signal of the anomeric proton (Ha, J= 6.0 Hz, Scheme 3) in aziridine 21β indicates a slight preference for conformer b with the methoxy group equatorial. Under acidic opening conditions, conformer b appears to be further favored by the incursion of an effective hydrogen bong between the protonated aziridine nitrogen and the endocyclic oxygen.⁵
- 16. In the case of aziridines $7.8\alpha,\beta$, the numbering is the one commonly used in the nomenclature of the bicyclo compounds.⁵

Acknowledgement. This work was supported by the Consiglio Nazionale delle Ricerche (CNR) and Ministero dell'Università e della Ricerca Scientifica e Tecnologica (MURST, Roma).